Interval Type 2 Fuzzy Set in Fuzzy Shortest Path Problem
نویسندگان
چکیده
The shortest path problem (SPP) is one of the most important combinatorial optimization problems in graph theory due to its various applications. The uncertainty existing in the real world problems makes it difficult to determine the arc lengths exactly. The fuzzy set is one of the popular tools to represent and handle uncertainty in information due to incompleteness or inexactness. In most cases, the SPP in fuzzy graph, called the fuzzy shortest path problem (FSPP) uses type-1 fuzzy set (T1FS) as arc length. Uncertainty in the evaluation of membership degrees due to inexactness of human perception is not considered in T1FS. An interval type-2 fuzzy set (IT2FS) is able to tackle this uncertainty. In this paper, we use IT2FSs to represent the arc lengths of a fuzzy graph for FSPP. We call this problem an interval type-2 fuzzy shortest path problem (IT2FSPP). We describe the utility of IT2FSs as arc lengths and its application in different real world shortest path problems. Here, we propose an algorithm for IT2FSPP. In the proposed algorithm, we incorporate the uncertainty in Dijkstra’s algorithm for SPP using IT2FS as arc length. The path algebra corresponding to the proposed algorithm and the generalized algorithm based on the path algebra are also presented here. Numerical examples are used to illustrate the effectiveness of the proposed approach.
منابع مشابه
Fuzzy Shortest-Path Network Problems With Uncertain Edge Weights
This paper presents two new types of fuzzy shortest-path network problems. We consider the edge weight of the network as uncertain, which means that it is either imprecise or unknown. Thus, the first type of fuzzy shortest-path problem uses triangular fuzzy numbers for the imprecise problem. The second type uses level (1 − β, 1 − α) interval-valued fuzzy numbers, which are based on past statist...
متن کاملA New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets
A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...
متن کاملA New Approach for Solving Type-2 Fuzzy Shortest Path Problem
Abstract. In a network the arc lengths may represent time or cost. In practical situations, it is reasonable to assume that each arc length is a type-2 discrete fuzzy set. We called it the type-2 discrete fuzzy shortest path problem. In this paper we proposed an algorithm for finding shortest path and shortest path length from source node to destination node using type reduction method. We have...
متن کاملSolving Critical Path Problem in Project Network by a New Enhanced Multi-objective Optimization of Simple Ratio Analysis Approach with Interval Type-2 Fuzzy Sets
Decision making is an important issue in business and project management that assists finding the optimal alternative from a number of feasible alternatives. Decision making requires adequate consideration of uncertainty in projects. In this paper, in order to address uncertainty of project environments, interval type-2 fuzzy sets (IT2FSs) are used. In other words, the rating of each alternativ...
متن کاملALGORITHMS FOR BIOBJECTIVE SHORTEST PATH PROBLEMS IN FUZZY NETWORKS
We consider biobjective shortest path problems in networks with fuzzy arc lengths. Considering the available studies for single objective shortest path problems in fuzzy networks, using a distance function for comparison of fuzzy numbers, we propose three approaches for solving the biobjective prob- lems. The rst and second approaches are extensions of the labeling method to solve the sing...
متن کامل